BlueShadow

Pump 80P
Instructions
Note: For your own safety, read the instructions and observe the warnings and safety information on the device and in the instructions. Keep the instructions for future reference.

Note: In case you require a version of this instruction in another language, please submit your request including the corresponding document number via e-mail or fax to KNAUER.

Customer Support: Telefon: +49 30 809727-111 (9-17h, Central European Time)
Fax: +49 30 8015010
E-Mail: support@knauer.net
Languages: German, English

Publisher: KNAUER Wissenschaftliche Geräte GmbH
Hegauer Weg 38
14163 Berlin
Telefon: +49 30 809727-0
Fax: +49 30 8015010
Internet: www.knauer.net
E-Mail: info@knauer.net

Version information: Document number: V7680
Version number: 4.0
Release date: 2019/05/28
Translation of the original edition

The information in this document is subject to change without prior notice.
For the latest version of the instructions, visit our website: www.knauer.net/library

Sustainability: For the printed versions of our instructions, we use environmentally friendly paper from sustainable forests.

Copyright: This document contains confidential information and may not be reproduced without written content of KNAUER Wissenschaftliche Geräte GmbH.

© KNAUER Wissenschaftliche Geräte GmbH 2019
All rights reserved.
Table of contents

1. **Product information** ... 1
 1.1 Intended use .. 1
 1.2 Performance features ... 1
 1.3 Device overview .. 2
 1.4 Pump heads ... 3

2. **Basic safety instructions** ... 4
 2.1 Target group .. 4
 2.2 Safety equipment ... 4
 2.3 What must the user take into account? .. 4
 2.4 Warning notifications ... 5
 2.5 Decontamination .. 6

3. **Symbols and signs** ... 7

4. **Scope of delivery** .. 7

5. **Installation** .. 8
 5.1 Preparations ... 8
 5.1.1 Operating location .. 8
 5.1.2 Power supply ... 9
 5.1.3 Unpacking the device ... 9
 5.2 Connecting the piston backflushing ... 10
 5.3 Eluent inlet .. 11
 5.3.1 Connecting the eluent inlet to the pump head ... 12
 5.3.2 Connecting the eluent line .. 12
 5.4 Changing the setup to LPG ... 13
 5.4.1 Valve block types .. 13
 5.4.2 Connecting the LPG module .. 14
 5.4.3 Controlling the LPG module ... 15
 5.5 Control .. 15
 5.5.1 Pin header connectors .. 16
 5.5.2 Events terminal strip ... 18
 5.5.3 Connecting cables to the pin header .. 19
 5.6 Connecting the device to a computer ... 20
 5.6.1 Configuring the LAN settings .. 20
 5.6.2 Connect devices to LAN .. 21
 5.6.3 Configuring the router .. 21
 5.6.4 Integrating the LAN into the company network .. 22
5.6.5 Controlling several systems separately in the LAN .. 22
5.6.6 Analog control ... 22

6. Operation ... 23

6.1 Switching on the pump ... 23
6.2 Flushing the pump .. 23
 6.2.1 Operating mode LPG ... 24
 6.2.2 Operating mode isocratic or HPG 25
 6.2.3 Touchscreen ... 25
 6.2.4 Using the touchscreen .. 25
 6.2.5 Overview of the keys ... 26

6.3 Menu structure ... 27
 6.3.1 Main menu .. 27
 6.3.2 Setup menu ... 29
 6.3.3 Solvent menu ... 32
 6.3.4 GLP menu ... 33
 6.3.5 Program menu ... 33
 6.3.6 Link menu ... 38

6.4 Setting minimal and maximal pump pressure. 40
6.5 Configuring control signals .. 41
6.6 Configuring the LPG module .. 41

7. Functional tests .. 42

7.1 Installation Qualification (IQ) .. 42
7.2 Operation Qualification (OQ) .. 42

8. Troubleshooting ... 43

8.1 LAN ... 43
8.2 Possible problems and solutions .. 44
8.3 System messages ... 45

9. Maintenance and care ... 49

9.1 Maintenance contract ... 49
9.2 Cleaning and caring for the device ... 49
9.3 Fittings .. 50
 9.3.1 Torque values ... 50
 9.3.2 Tighten fittings .. 50
9.4 Pump head ... 50
 9.4.1 Dismounting the pump head ... 50
 9.4.2 Installing the pump head .. 51
Table of contents

9.5 Check valves ... 52
 9.5.1 Removing the check valves 52
 9.5.2 Cleaning the check valve .. 53
 9.5.3 Installing the check valve .. 53

10. Technical data .. 54
 10.1 Solvent delivery .. 54
 10.2 Communication .. 55
 10.3 General ... 55

11. Repeat orders .. 56
 11.1 Devices ... 56
 11.2 Spare parts ... 56

12. Chemical compatibility of wetted materials 57
 12.1 General ... 57
 12.2 Plastics ... 57
 12.3 Metals .. 59
 12.4 Non-metals ... 60

13. Legal information .. 61
 13.1 Transport damage ... 61
 13.2 Warranty conditions .. 61
 13.3 Warranty seal ... 61
 13.4 Declaration of Conformity ... 62
 13.5 Disposal ... 62

14. Abbreviations and terminology 63
1. **Product information**

 Note: Only use the device for applications that fall within the range of the intended use. Otherwise, the protective and safety equipment of the device could fail.

 Automatic piston backflushing increases the service life of the seals and pistons, and removes salt and other substances from the area behind the seals.

 Operating modes

 Isocratic operation:
 - Separation without gradients
 - The solvent composition is constant during the analysis.
 - The solvent can be recycled.

 Gradient operation
 - LPG (Low Pressure Gradient): The gradient is formed on the low-pressure side of the pump.
 - HPG (High Pressure Gradient): The gradient is formed on the high-pressure side of the pump.

 1.1 Intended use

 The device or device system is suitable for high-pressure liquid chromatography. It is suitable for laboratory use, for separating substance mixtures that can be dissolved in a solvent or solvent mixture.

 - Dosing pump
 - Separation of substances
 - Filtration of substances

 1.2 Performance features

 - Dual-piston technology
 - Liquid transport with low pulsation, stable flow rate, and high flow accuracy
 - Long service life
 - Internal controlling for programming binary to quaternary high-pressure gradients
 - HPG system: up to four pumps can be combined
 - LPG system: Connection of a binary or ternary LPG valve block
 - Ultra-precise gradient mixtures throughout entire flow range
 - High physical and chemical stability
 - Direct pump control via analog and digital signals
 - Control with chromatography software
1.3 Device overview

Legend
① Touchscreen
② Pressure sensor
③ Venting screw
④ Tube connections for the piston backflushing
⑤ Pump head

Fig. 1: Front view

Legend
① Serial number
② Socket for the LPG valve block
③ Events terminal strip
④ Opening of the fan
⑤ Power switch
⑥ Remote terminal strip
⑦ Interface RS-232
⑧ LAN connection

Fig. 2: Rear view
1.4 Pump heads

Pump head for use in preparative applications:
- Standard model, stainless steel
- Stainless steel or titanium inlays for biocompatible applications:
 - 100 ml, 250 ml, 500 ml, 1000 ml

For biocompatibility, pump heads with titanium inlays can be used. The pump heads can be exchanged by the user.

Designation

The front of the pump head is labeled with the maximum pumping capacity and the pump head inlays (SS for stainless steel, Ti for titanium).

Fig. 3: Pump head 500 ml, stainless steel

RFID detection

The pump head is equipped with an RFID chip. It is used to monitor and save all important parameters and settings of the pump and pump head.

The RFID technology offers the following advantages:
- Automatic detection of all important pump head parameters by means of radio signals (radio frequency identification), by the pump software or the chromatography software:
 - Pump head type
 - Serial number and year of manufacture
 - Number of cycles and operating times
 - Limit values of the pump head parameters
- All measuring data archived in accordance with GLP (Good Laboratory Practice).
- Transfer of all data to the software and pump display.
2. Basic safety instructions

2.1 Target group

This document addresses persons who are qualified as chemical laboratory technicians or have completed comparable vocational training.

The following knowledge is required:

- Fundamental knowledge of liquid chromatography
- Knowledge regarding substances that are suitable only to a limited extent for use in liquid chromatography
- Knowledge regarding the health risks of chemicals
- Participation during an installation of a device or a training by the company KNAUER or an authorized company.

If you do not belong to this or a comparable professional group, you may not perform the work described in these instructions under any circumstances. In this case, please contact your superior.

2.2 Safety equipment

When working with the device, take measures according to lab regulations and wear protective clothing:

- Safety glasses with side protection
- Protective gloves
- Lab coat

2.3 What must the user take into account?

- All safety instructions in this document
- The environmental, installation, and connection specifications in this document
- National and international regulations pertaining to laboratory work
- Original spare parts, tools, and solvents made or recommended by KNAUER
- Good Laboratory Practice (GLP)
- Accident prevention regulations published by the accident insurance companies for laboratory work
- Filtration of substances under analysis
- Use of inline filters
- Once the capillaries have been used, never re-use them in other areas of the HPLC system.
- Only use a given PEEK fitting for one specific port and never re-use it for other ports. Always install new PEEK fittings on each separate port.
- Follow KNAUER or manufacturer’s instructions on caring for the columns.
More safety-relevant information is listed below:

- **flammability**: Organic solvents are highly flammable. Since capillaries can detach from their screw fittings and allow solvent to escape, it is prohibited to have any open flames near the analytical system.
- **solvent tray**: Risk of electrical shock or short circuit if liquids get into the device’s interior. For this reason, place all bottles in a solvent tray.
- **solvent lines**: Install capillaries and tubing in such a way that liquids cannot get into the interior in case of a leak.
- **leaks**: Regularly check if any system components are leaking.
- **power cable**: Defective power cables are not to be used to connect the device and the power supply system.
- **self-ignition point**: Only use eluents that have a self-ignition point higher than 150 °C under normal ambient conditions.
- **power strip**: If several devices are connected to one power strip, always consider the maximum power consumption of each device.
- **power supply**: Only connect devices to voltage sources, whose voltage equals the device’s voltage.
- **toxicity**: Organic eluents are toxic above a certain concentration. Ensure that work areas are always well-ventilated! Wear protective gloves and safety glasses when working on the device!

Where is use of the device prohibited?

Never use the system in potentially explosive atmospheres without appropriate protective equipment. For further information, contact the Technical Support of KNAUER.

Secure decommissioning

Take the device completely out of operation by disconnecting the power plug from the power supply (wall socket or power strip).

Opening the device

The device may be opened by the KNAUER Technical Support or any company authorized by KNAUER only.

2.4 Warning notifications

Possible dangers related to the device are divided into personal and material damage in these instructions.

<table>
<thead>
<tr>
<th>Sign</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DANGER (red) indicates a hazardous situation which, if not avoided, will result in death or serious injury.</td>
</tr>
<tr>
<td></td>
<td>WARNING (orange) indicates a hazardous situation which, if not avoided, could result in death or serious injury.</td>
</tr>
<tr>
<td></td>
<td>CAUTION (yellow) indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.</td>
</tr>
<tr>
<td></td>
<td>NOTICE (blue) is used to address practices not related to physical injury.</td>
</tr>
</tbody>
</table>
2.5 Decontamination

Contamination of devices with toxic, infectious or radioactive substances poses a hazard for all persons during operation, repair, sale, and disposal of a device.

⚠️ DANGER

Life-threatening injuries

Health danger if getting in contact with toxic, infectious or radioactive substances.

⇒ Before disposing of the device or sending it away for repair, you are required to decontaminate the device in a technically correct manner.

All contaminated devices must be properly decontaminated by a specialist company or the operating company before they can be recommissioned, repaired, sold, or disposed of. All materials or fluids used for decontamination must be collected separately and disposed of properly.
3. Symbols and signs

The following symbols and signs can be found on the device:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Electric shock hazard</td>
</tr>
<tr>
<td></td>
<td>Electrostatic discharge hazard, damages to system, device, or components can occur.</td>
</tr>
<tr>
<td></td>
<td>A device or system marked with CE fulfills the product specific requirements of European directives. This is confirmed in a Declaration of Conformity.</td>
</tr>
<tr>
<td></td>
<td>Testing seals in Canada and the USA at nationally recognized testing centers (NRTL). The certified device or system has successfully passed the quality and security tests.</td>
</tr>
</tbody>
</table>

4. Scope of delivery

Note: Only use original parts and accessories made by KNAUER or a company authorized by KNAUER.

- Power cable
- BlueShadow Pump 80P with pump head
- Accessories kit pump 80P
- Accessories kit pump head

Applicable documents:

- user manual
- Installation Qualification
- Declaration of Conformity
5. Installation

This chapter describes all preparatory steps prior to start-up.

5.1 Preparations

5.1.1 Operating location

The intended use be ensured only if the requirements for ambient conditions of the operating environment are met. You will find the ambient conditions under Technical Data.

NOTICE

Device defect

The device overheats at exposure to sunlight and insufficient air circulation. Device failures are very likely.

- Set up the device in such a way that it is protected against exposure to direct sunlight.
- Leave room for air circulation: See paragraph „space requirements“.

Space requirements

- At least 5 cm, if there is another device on one side.
- At least 10 cm, if there are devices set up on both sides.
- At least 15 cm to the cooler fan on the rear.
- Make sure that the power plug on the power supply (wall socket or power strip) is always accessible, so that the device can be disconnected from the power supply.

General purpose

- Position the device on a level surface.
- Protect the device against direct exposure to sunlight.
- Set up the device at a location not exposed to air drafts such as air conditioning systems.
- Do not set up the device near to other machines that cause floor vibrations.
- Keep the the devices away from high frequency sources. High frequencies may compromise measuring values.

Note: Make sure that the power plug on the rear of the device is always accessible, so that the device can be disconnected from the power supply.

Change of location

Observe the following when moving the device from a cooling room to a normal laboratory:

- Switch on the device before moving and leave switched on for ½ hour to warm up.
- As an alternative, allow the device to warm up in the laboratory for at least 3 hours and do not connect to the power supply during this duration to avoid damages by condensed water.
5.1.2 Power supply

For power supply, use the supplied power cable and power adapter to meet the specifications which are described in the chapter Technical Data. But inspect the provided power cable beforehand to ensure that it is approved for your country. Replace defective power cables only with accessories from KNAUER. Detachable power supply cables are not allowed to be replaced with other cable types.

NOTICE

Device defect
Changes of the environmental temperature cause condensation inside the device.
⇒ Allow device to acclimate for 3 h before connecting to power supply and taking into operation.

Electronic defect
Electronic hazard when using an identically constructed power adapter from another manufacturer.
⇒ Only use spare parts and accessories from KNAUER or a company authorized by KNAUER.

Conditions
The electrical power supply at the installation site must be connected directly to the nearest main power line.
- The power must be free from ripple, residual current, voltage peaks and electromagnetic interference.
- The connectors for the mains voltage are grounded accordingly.
- The device receives sufficient power with reserve capacity

Power plug
- The device is intended for use with AC power networks of 100-240 V.
- Make sure that the power plug on the power supply (wall socket or power strip) is always accessible, so that the device can be disconnected from the power supply.

5.1.3 Unpacking the device

Prerequisites
- Check the carton for damage caused during transportation.

Tools
- Utility knife

CAUTION

Bruising danger
Damage to the device by carrying or lifting it on protruding housing parts. The device may fall and thus cause injuries.
⇒ Lift the device only centrally on the side of the housing.
Process

1. Set-up the package in such a way that you can read the label.
2. Using the utility knife, cut the adhesive tape and open the packaging.
3. Lift the foam padding. Take out the accessories kit and the manual.
4. Open the accessories kit and check the scope of delivery. In case any parts are missing, contact the Technical Support.
5. Clasp the device from below, lift it out of the packaging and place it on its feet. Do not hold onto the front cover.
6. Check the device for signs of damage that occurred during transport. In case any parts are missing, contact the Technical Support.
7. Set up the device at the operation site. Lift the foam padding.

Next steps

Store packaging and keep the included packing list for repeat orders.

5.2 Connecting the piston backflushing

The pump is equipped with automatic piston backflushing. It increases the service life of the seals and pistons, and removes contaminants from the area behind the seals.

Functional principle

The piston backflushing function automatically flushes the rear piston area of the pump head upon switch-on and in continuous operation.

- Upon switch-on: The rear piston area of the pump head is automatically flushed for 30 seconds.
- In continuous mode: The rear piston area of the pump head is flushed automatically every 60 minutes, for 30 seconds.

Process

1. Lead a tube from the solvent bottle to the flush pump's inlet ① and fasten.
2. Lead a tube from the flush pump's outlet ④ to the pump head's inlet ③ and fasten it.
3. Fasten a tube to the pump head's outlet ② and lead to the waste bottle.

![Fig. 4: Connectors for piston backflushing](image-url)
5.3 Eluent inlet

Note: The accessory Kit includes PTFE tubing and PETP bushing/sealing ring, which can be used for standard HPLC applications. For applications with aggressive solvents, PEEK or stainless steel parts are available.

The eluent lines are connected by the eluent inlet to the pump head.

Legend

① Knurled-head screw
② Eluent inlet

Fig. 5: Connecting the eluent inlet to the pump head
5.3.1 Connecting the eluent inlet to the pump head

<table>
<thead>
<tr>
<th>Process</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. With the knurled-head screw ②, screw the eluent inlet into the inlet screw fitting ① of the pump head.</td>
<td></td>
</tr>
<tr>
<td>2. Turn the eluent inlet until the intake manifold input ③ points forward.</td>
<td></td>
</tr>
<tr>
<td>3. Tighten the knurled-head screw.</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 6: Eluent inlet, variant 1

Fig. 7: Eluent inlet, variant 2

5.3.2 Connecting the eluent line

Preparations
- Make sure that all connections are tight.
- Make sure that the tapered side of the cutting ring is pointed towards the fastening screw of the Teflon tube.
5.4 Changing the setup to LPG

The low-pressure gradient valve block (LPG valve block) supplements the pump to a low-pressure gradient system.

5.4.1 Valve block types

- Ternary LPG valve block for flow rates in the range of 10–220 ml/min
- Binary LPG valve block for flow rates in the range of 10–800 ml/min
Legend

1. Ternary LPG valve block
2. Fastening screws with sealing ring
3. Plug

![Ternary LPG valve block](image)

Fig. 10: Ternary LPG valve block

5.4.2 Connecting the LPG module

Always place seals in pairs on both fastening screws.

The plug 5 should not be detached during operation.

<table>
<thead>
<tr>
<th>Process</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. In the Setup menu, select Gradient type LPG ternary or otherwise LPG binary.</td>
<td></td>
</tr>
<tr>
<td>2. Switch off the pump and pull the power plug.</td>
<td></td>
</tr>
<tr>
<td>3. Unscrew the eluent inlets from the inlet screw fittings 3 of the pump head 1.</td>
<td></td>
</tr>
<tr>
<td>4. Screw tight LPG valve block 2 with the fastening screws 4 and seals to the pump head.</td>
<td></td>
</tr>
<tr>
<td>5. Connect the eluent tubing to the inlets of the LPG valve block.</td>
<td></td>
</tr>
<tr>
<td>6. Plug a cap fitting into the unused inlet.</td>
<td></td>
</tr>
<tr>
<td>7. Plug in the plug 5 in the socket 6 for LPG valve block on the rear of the pump.</td>
<td></td>
</tr>
</tbody>
</table>

![Socket for the LPG valve block](image)

Fig. 11: Valve block connection

Fig. 12: Socket for the LPG valve block
5.4.3 **Controlling the LPG module**

- Manual control of the pump via touchscreen
- PC control with chromatography software

5.5 **Control**

There are 3 ways to operate the pump:

- Via the pin head
- As part of a LAN, via the LAN connector of the router
- Operation on display

All connectors are located on the rear side of the detector.

Legend

1. Serial number
2. Socket for the LPG valve block
3. Events terminal strip
4. Opening of the fan
5. Power switch
6. Remote terminal strip
7. Interface RS-232
8. LAN connection

Fig. 13: Rear view
5.5.1 Pin header connectors

<table>
<thead>
<tr>
<th>Connection</th>
<th>Function</th>
<th>Levels</th>
<th>Pulse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1TTL</td>
<td>TTL-compatible output</td>
<td>passive 0 V</td>
<td>5 V for at least 1000 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>active 5 V</td>
<td></td>
</tr>
<tr>
<td>2TTL</td>
<td>TTL-compatible output</td>
<td>passive 0 V</td>
<td>5 V for at least 1000 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>active 5 V</td>
<td></td>
</tr>
<tr>
<td>3OC</td>
<td>TTL Output</td>
<td>passive 0 V</td>
<td>5 V for at least 1000 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>active 5 V</td>
<td></td>
</tr>
<tr>
<td>GND</td>
<td>Reference point of the voltage at the signal inputs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4TTL</td>
<td>TTL-compatible output</td>
<td>passive 0 V</td>
<td>5 V for at least 1000 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>active 5 V</td>
<td></td>
</tr>
<tr>
<td>5TTL</td>
<td>TTL-compatible output</td>
<td>passive 0 V</td>
<td>5 V for at least 1000 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>active 5 V</td>
<td></td>
</tr>
<tr>
<td>6OC</td>
<td>TTL Output</td>
<td>passive 0 V</td>
<td>5 V for at least 1000 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>active 5 V</td>
<td></td>
</tr>
</tbody>
</table>
Connection & Function

<table>
<thead>
<tr>
<th>Connection</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>Reference point of the voltage at the signal inputs.</td>
</tr>
</tbody>
</table>

Relay Contact

The contact is on a floating basis. Its setting depends on the settings in the Control Unit or software.

- **Steady-rate signal:**
 - passive = open relay contact
 - active = closed relay contact

- **Pulse:**
 - Closed relay contact for at least 1000 ms

Permissible load of the relay contact: 1 A/ 24 V DC

Analog GND
Reference point of the voltage at the signal inputs.

Analog out
Voltage range 0 – 5 V, scalable

Analog in
Power range 0 – 10 V

- 10 V according to maximum flow rate

Start GND
Reference point of the voltage at the signal inputs.

Start OUT
TTL Output

- **Levels:**
 - passive 5 V
 - active 0 V

Start IN
TTL Input

- Low-active

Secure switching threshold at least 10 mA

After receiving a signal (short-circuit to ground) from an external device, the device starts. If controlled with software, an electronic trigger is send through the LAN.

Error OUT
TTL Output

- **Levels:**
 - passive 5 V
 - active 0 V
Connection Function

<table>
<thead>
<tr>
<th>Connection</th>
<th>Function</th>
</tr>
</thead>
</table>
| Error IN | TTL Input
 - Low-active
 - Secure switching threshold at least 10 mA
 - After receiving a signal (short-circuit to ground) from an external device, an error message appears and the device stops. |
| Error GND | Reference point of the voltage at the signal inputs. |
| +24V | Event-controlled switching of 24 V against GND
 - Protection: 24 V - 200 mA |
| +5V | Provides a voltage of 5 V with respect to GND. This makes it possible to supply a consumer that is switched by an EVENT.
 - Protection: 5 V - 50 mA |
| GND | Reference point of the voltage at the signal inputs. |

5.5.2 Events terminal strip
- Sending control signals (Events) to external devices
- Opening and closing contacts
- Activating 500 ms pulses

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Off</td>
</tr>
<tr>
<td>●</td>
<td>On</td>
</tr>
<tr>
<td>[pulse]</td>
<td>Pulse</td>
</tr>
</tbody>
</table>
Legend

1. Status display Events
2. Events terminal strip

Fig. 14: Events Remote Connector

5.5.3 Connecting cables to the pin header

To control one device through another, you use the pin header. To use remote control, you have to connect cables to the pin header. The single ports are used to exchange control signals.

Prerequisites

- The device is switched off.
- The power plug has been disassembled from the device.

Tools

- Operating tool

NOTICE

Electronic defect
Connecting cables to the multi-pin connector of a switched on device causes a short circuit.

- Turn off the device before connecting cables.
- Pull the power plug.

NOTICE

Electronic defect
Electrostatic discharge can destroy the electronics.

- Wear a protective bracelet against electrostatic discharge and ground.
1. Insert the operating tool ① in an upper small opening at the front of the pin header ①.

2. Insert the cable into the opening ② underneath the insertet depressor tool.

3. Pull out the depressor tool.

Next steps
Check whether the cables are tightly attached. Press the pin header onto the plug. Finish the installation. Bring the device into operation.

5.6 Connecting the device to a computer

Note: HPLC devices from KNAUER only work with IP addresses, which have been assigned by IPv4. IPv6 is not supported.

This chapter describes how to set up a chromatography system in a local area network (LAN) and how a network administrator can integrate this LAN into your company network. The description applies to the operating system Windows® and all conventional routers.

To set up a LAN, we recommend to use a router. That means the following steps are required:

Process
1. On the computer, go to the control panel and check the LAN properties.
2. Hook up the router to the devices and the computer.
3. Set up the router for the computer network.
4. Install the chromatography software.
5. Switch on the device and run the chromatography software.

5.6.1 Configuring the LAN settings

The LAN uses only one server (which is normally the router) from that the devices automatically receive their IP address.

Prerequisites
- In Windows, power saving, hibernation, standby, and screen saver must be deactivated.
- In case you use an USB-to-COM box, the option "Allow the computer to turn off this device to save power" in the devicemanager must be deactivated for all USB hosts.
- Applies to all LAN devices: Disable the setting for the network adapter in Device Manager “Allow the computer to turn off this device to save power”.

Procedure
1. In Windows choose Start > Control Panel > Network and Sharing Center.
2. Double-click on LAN connection.
3. Click on the button Properties.
5. Click on the button Properties.
6. Check the settings in the tab General. The correct settings for the DHCP client are:
 a) Obtain an IP address automatically
 b) Obtain DNS server address automatically
7. Click on the button OK.

5.6.2 Connect devices to LAN

A router has several LAN ports and one WAN port that can be used to integrate the LAN into a wide area network (WAN), e.g. a company network or the Internet. In contrast, the LAN ports serve to set up a network from devices and a computer. To avoid interference, we recommend operating the chromatography system separately from the company network.

You will find patch cables for each device and the router in the accessories kit. To connect the router to a LAN, an additional patch cable is required, which is not supplied within the scope of delivery.

Prerequisites
- The computer has been switched off.
- There is a patch cable for each device and the computer.

Procedure
1. Use the patch cable to connect the router and the computer. Repeat this step to connect all devices.
2. Use the power supply to connect the router to the mains power system.

5.6.3 Configuring the router

The router is preset at the factory. Information about address, user name and password is noted in the router manual: www.knauer.net/router

Procedure
1. To open the router configuration, start your Internet browser and enter the IP address (not for all routers).
2. Enter user name and password.
3. Configure the router as DHCP server.
4. In the router configuration, check the IP address range and make changes if necessary.

Note: If the IP address range should have been changed, make sure to note this information on the router.
Once the router has assigned IP addresses to all devices, the chromatography software can be used to remotely control the system.

5.6.4 Integrating the LAN into the company network

A network administrator can integrate the LAN into your company network. In this case you use the WAN port of the router.

Prerequisites

There is a patch cable for the connection.

Procedure

1. Check that the IP address range of the router and of the company network do not overlap.
2. In case of an overlap, change the IP address range of the router.
3. Use the patch cable to connect the router WAN port to the company network.
4. Restart all devices, including the computer.

5.6.5 Controlling several systems separately in the LAN

Devices connected to a LAN communicate through ports, which are part of the IP address. If more than one chromatography systems are connected to the same LAN and you plan on controlling them separately, you can use different ports to avoid interference. Therefore, the port number for each device must be changed and this same number must be entered into the device configuration of the chromatography software. We recommend to use the same port number for all devices in the same system.

Note: The port is set to 10001 at the factory. You must use the same numbers in the device configuration of the chromatography software as in the device, otherwise the connection fails.

Procedure

1. Find out port number and change it on the device.
2. Enter the port number in the chromatography software.

Result

The connection is established.

5.6.6 Analog control

Analog ports serve for exchanging analog control signals. Reference point for the signals is the connector GND.

- **OUT:** Device sends signal.
- **IN:** Device receives signal.
6. Operation

6.1 Switching on the pump

Note: Operator errors and clogged capillaries can cause high pressure spikes.

NOTICE

Component defect
Possible damage to the pump head due to dry running.
⇒ Make sure that solvent flows through the pump head and piston backflushing.

Process
1. Switch on the pump. The device performs a self-test.
2. Wait until the pump has completed the self-test.
3. After the test has been successfully completed, the program that was active last is displayed. The pump is now ready for operation.

6.2 Flushing the pump

Prerequisites Venting screw of the pressure sensor has been opened.

Note: The purging process of the pump is limited to a maximum pressure of 5 MPa. If this value is exceeded during the purging process, the pump switches off automatically.

Process
1. In the status display of the pump, tap on the flow rate field highlighted in gray.

 ![Flow Rate Field](image)

2. Enter the value for the flow rate via the keypad.
3. should be tapped to save the settings.
4. tap.
5. Choose Purge A, Purge B, Purge C, Purge D or Purge 3 to start the purging process.

6. Tap to stop the purging process.

6.2.1 Operating mode LPG

1. In the gradient directory of the Setup menu, select the gradient mode LPG ternary or otherwise LPG binary (Diagram A and B).

2. In purging mode, choose either gradients AB or otherwise ABC or individually A, B and C (Diagram C).

Diagram A

- **Gradient**
 - Channel A: ON
 - Channel B: ON
 - Type: LPG binary

Diagram B

- **Select: Gradient - type**
 - HPG - A: LPG bin.
 - HPG - B: LPG ter.
 - HPG - C: None
 - HPG - D: None

Diagram C

- **Purge**
 - 35.000 ml/min
 - 0 bar
 - AB
 - Purge Stop

Fig. 15: Gradient directory of the Setup menu
6.2.2 Operating mode isocratic or HPG

1. In the Gradient directory of the Setup menu, choose Type: Select HPG A, HPG B, HPG C, HPG D or none.

![Fig. 16: Purging the pump, isocratic and HPG system](image)

6.2.3 Touchscreen

Working without chromatography software

The touchscreen of the pump is suitable for the following tasks:
- Monitoring the module functions
- Using special programs for laboratory work:
 - Flushing program
 - Program Standby and Wake Up (WU)
 - Program links (named Link in menu)
 - Programs for configuring the modules (Setup menu)
 - Checking the system status as part of quality assurance measures in accordance with good laboratory practices (GLP menu)

6.2.4 Using the touchscreen

Legend

1. Status bar
2. To main menu
3. Parameters or value
4. Animated information diagram
5. Button for starting or stopping a function

![Fig. 17: Touchscreen](image)
Using the touchscreen

All fields with a gray background are touch-sensitive and can be edited. The buttons for setting or modifying functions are always labeled, e.g., START. The pump starts to work when you tap the button and the label on the button changes to STOP.

The pumps can be switched off at any time using the [STOP] button on the touchscreen. This function can also be used in remote mode in the chromatography software.

6.2.5 Overview of the keys

<table>
<thead>
<tr>
<th>Button</th>
<th>Function</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>⬅️ ⬅️</td>
<td>Scroll</td>
<td>Scroll through all functions</td>
</tr>
<tr>
<td>⬅️</td>
<td>One level higher up</td>
<td>Tap to move up one level</td>
</tr>
<tr>
<td>⫸</td>
<td>Go to device status display</td>
<td>Press and hold for 2 seconds</td>
</tr>
<tr>
<td>⮣</td>
<td>To main menu</td>
<td>Tap to go to the Main menu</td>
</tr>
<tr>
<td></td>
<td>Start module</td>
<td>Starts the module, e.g. a pump begins pumping</td>
</tr>
<tr>
<td></td>
<td>Emergency stop symbol on touchscreen of the pump</td>
<td>This function can also be used in remote mode in the chromatography software</td>
</tr>
<tr>
<td>⬅️</td>
<td>Saves the entry</td>
<td>-</td>
</tr>
<tr>
<td>⫸</td>
<td>Run a program</td>
<td>Starts previously configured program in Program menu</td>
</tr>
<tr>
<td>⫸</td>
<td>Interrupt the program</td>
<td>-</td>
</tr>
<tr>
<td>⫸</td>
<td>Stop program</td>
<td>-</td>
</tr>
<tr>
<td>⫸</td>
<td>Restart</td>
<td>Repeat the program -</td>
</tr>
<tr>
<td>⫸</td>
<td>Finish</td>
<td>Exit loaded program -</td>
</tr>
<tr>
<td>⫸</td>
<td>Day</td>
<td>Confirm the day -</td>
</tr>
<tr>
<td>⫸</td>
<td>Month</td>
<td>Confirm month -</td>
</tr>
</tbody>
</table>
6.3 Menu structure

The pump has the following touchscreen menu structure (see Fig. 19):

- Creating programs (Program menu)
- Creating program links (Link menu)
- Data entry for selected solvent compressibility (Solvent menu)
- Pump settings (Setup menu)
- Device status displayed according to good laboratory practice (GLP menu)
- Function for switching device into **Standby**-mode

6.3.1 Main menu

The main menu displays the **Program**, **Link**, **Solvent**, **Setup**, and **GLP** menu as well as the **Standby** function.

Process	**Figure**
1. Tap ![Folder icon] to go to the Main menu.
2. Tap on desired menu.

![Menu](image)

Fig. 18: Touchscreen main menu
Fig. 19: Menu structure pump GUI
6.3.2 Setup menu

In the Setup menu, fundamental parameters for controlling the pump are specified.

<table>
<thead>
<tr>
<th>Process</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tap the Setup menu to display options</td>
<td>Menu > Setup</td>
</tr>
<tr>
<td>2. Tap options to display the current pump parameters.</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 20: Touchscreen menu Setup

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog in</td>
</tr>
</tbody>
</table>

Note: Before operating this configuration, change to the Network configuration and set the external communication port of the pump to Analog (see Network value).

Configure the analog input of the Remote connector for an external flow rate control:

Actual interpreted flow: 0,000 ml/min

Procedure: Set to Zero

Define an applied input voltage as zero point with the flow rate of 0,000 ml/min. If a deviating positive control voltage is applied, a resulting flow rate is displayed at **actual interpreted flow**, based on the basic setting:

- 10 ml corresponds to 1 V for the 100 ml pump head
- 50 ml corresponds to 1 V for the 500 ml pump head

This flow rate value can be changed. Thus, a second calibration point is generated, which modifies the scaling.
Value

Analog in
Time constant IN
Select the time constant for analog input, to be used for signal smoothing (0.1-10.0 S). The larger the value of the selected time constant, the stronger the applied signal smoothing.

<table>
<thead>
<tr>
<th>Setup: Analog In</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual interpreted flow:</td>
<td>0.000 ml/min</td>
</tr>
<tr>
<td>Procedure:</td>
<td>Set to Zero</td>
</tr>
<tr>
<td>Time constant:</td>
<td>0.1 s</td>
</tr>
</tbody>
</table>

![Fig. 22: Configuration Analog In]

Analog out
Output of analog pump signals to external devices by means of the remote terminal strip:

- **Offset:**
 0.00 mV, Data entry for the analog output.

- **Full scale:**
 Voltage range options: 1 V, 2 V, 5 V

- **Signal source:**
 - **Pressure** Preset for outputting the currently measured pressure for the purpose of external recordings or control.
 - **Slave B** For outputting a signal for controlling a second pump.
 - **HPG/LPG-A to HPG/LPG-D**
 - **disabled**

- **Time constant OUT:**
 Set the time constant for analog output to be used for signal smoothing. The larger the value of the selected time constant, the stronger the applied signal smoothing.

<table>
<thead>
<tr>
<th>Setup: Analog Out</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset:</td>
<td>0.000 mV</td>
</tr>
<tr>
<td>Full Scale:</td>
<td>1 V</td>
</tr>
<tr>
<td>Signal source:</td>
<td>Pressure</td>
</tr>
<tr>
<td>Time constant:</td>
<td>0.1 s</td>
</tr>
</tbody>
</table>

![Fig. 23: Configuration Analog Out]

Date
Setting the date and time.
Event check
Check the **Events** terminal strip.
- **Start IN:**
- **Error-IN:** Statuses at the digital inputs
- **Active only:** Connections **Event 1** to **Event 8** and **24 V**

Gradient
Type and channel for high-pressure gradient (HPG), low-pressure gradient (LPG) and isocratic system can be set:
- **Channel A-D:** **ON/OFF** Activate of up to four channels.
- **Select Type:**
 - HPG-A to HPG-D
 - LPG ternary
 - LPG binary
 - **none** (isocratic system)

Network
Setting the external communication connection of the pump:
- **LAN-DHCP** Automatic network configuration
- **LAN-manual** Manual network configuration (**port**, **IP address**, **IP mask**, **Gateway**).
- **RS232-11520, RS232-38400, RS232-19200, RS232-9600** Serial interface
- **Analog** Manual control of the pump

Pump head
Select pump head:
- **100 ml**
- **250 ml**
- **500 ml**
- **1000 ml**
- **auto**

Only possible if automatic recognition of the pump head does not function.

Note: The selection is used as a basis for calculating the flow rate and determines the max. system pressure. This value applies for all operating modes and cannot be exceeded.

Units
Setting the measuring unit for the pressure:
- **Pressure:**
 - **bar**
 - **MPa**
 - **psi**
6.3.3 Solvent menu

In the Solvent menu you enter data for the compressibility of the solvents.

<table>
<thead>
<tr>
<th>Process</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tap Solvent to display current settings.</td>
<td></td>
</tr>
<tr>
<td>2. Tap on value in field with gray background to adjust the value to compressibility.</td>
<td>Compressibility: 0.86 1/GPa</td>
</tr>
<tr>
<td>3. Use the numeric fields to enter the appropriate value.</td>
<td>Fig. 24: Touchscreen menu Solvent</td>
</tr>
<tr>
<td>4. → should be tapped to go to the superordinate level, or hold for two seconds to go to the operational display.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solvent</td>
<td>Data entry for the compressibility of the selected solvent:</td>
</tr>
<tr>
<td>Water: 0.46</td>
<td></td>
</tr>
<tr>
<td>Benzene: 0.95</td>
<td></td>
</tr>
<tr>
<td>Chloroform: 0.97</td>
<td></td>
</tr>
<tr>
<td>Ethanol: 1.10</td>
<td></td>
</tr>
<tr>
<td>Acetone: 1.23</td>
<td></td>
</tr>
<tr>
<td>Methanol: 1.21</td>
<td></td>
</tr>
<tr>
<td>n-heptane: 1.40</td>
<td></td>
</tr>
<tr>
<td>n-hexane: 1.50</td>
<td></td>
</tr>
<tr>
<td>Diethyl ether: 1.84</td>
<td></td>
</tr>
<tr>
<td>Acetonitrile: 0.99</td>
<td></td>
</tr>
<tr>
<td>Tetrahydrofuran: 0.93</td>
<td></td>
</tr>
<tr>
<td>Water/methanol (10/90): 1.17</td>
<td></td>
</tr>
<tr>
<td>Water/methanol (20/80): 0.86</td>
<td></td>
</tr>
<tr>
<td>Water/methanol (40/60): 0.56</td>
<td></td>
</tr>
<tr>
<td>Water/methanol (50/50): 0.52</td>
<td></td>
</tr>
<tr>
<td>Water/methanol (60/40): 0.46</td>
<td></td>
</tr>
<tr>
<td>Water/methanol (80/20): 0.40</td>
<td></td>
</tr>
<tr>
<td>Water/methanol (90/10): 0.34</td>
<td></td>
</tr>
</tbody>
</table>
6.3.4 GLP menu

In the GLP menu, statistical data on important parameters of the pump are displayed.

<table>
<thead>
<tr>
<th>Process</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tap the GLP menu to display operating parameters.</td>
<td></td>
</tr>
<tr>
<td>2. Tap the gray highlighted values to display all available options.</td>
<td></td>
</tr>
<tr>
<td>3. 🎯should be tapped to scroll through the other options in the GLP menu.</td>
<td></td>
</tr>
<tr>
<td>4. 🎯should be tapped to go to the superordinate level, or hold for two seconds to go to the operational display.</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 25: Touchscreen menu GLP

6.3.5 Program menu

The Program menu is used to list and create programs. The pump can save up to 10 programs and up to 100 program lines.

Programs have the following functions:
- Controlling the flow rate
- Controlling the solvent composition
- Sending control signals (Events)

<table>
<thead>
<tr>
<th>Process</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tap the Program menu in order to display the program list.</td>
<td></td>
</tr>
<tr>
<td>2. Tap the desired program number to edit, open or delete the program.</td>
<td></td>
</tr>
<tr>
<td>3. Tap Load to run a program.</td>
<td></td>
</tr>
<tr>
<td>4. Tap Edit to enter the edit mode.</td>
<td></td>
</tr>
<tr>
<td>5. Tap Delete to delete a program.</td>
<td></td>
</tr>
<tr>
<td>6. Tap Tab to display a program line in a table.</td>
<td></td>
</tr>
<tr>
<td>7. 🎯should be tapped to go to the superordinate level, or hold for two seconds to go to the operational display.</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 26: Touchscreen menu Program
Creating a program

The use of the device is demonstrated using the example of a program to be created: Program 01 is to be used to create a solvent gradient (channels A and B) with constant flow rate of 10 ml/min. The percentage of solvent A is to be continuously decreased from 100 % to 0 % within 5.0 minutes.

Process	Figure
1. Tap the **Program** menu in order to display the program list.
2. Tap the desired program number and **Edit** to edit the program.

3. Enter the value for the flow rate: 10.
4. Tap **Flow** to save the settings.
5. Enter the value for channel A: 100.
6. Tap **A** to save the settings.
7. Tap **→** to move to the superordinate level.
8. Tap **New** to specify the time.

9. Enter the time value: 5.0.
10. Tap **Time** to save the settings.

11. Enter the value for channel A: 0.
12. Tap **A** to save the settings.
Process

13. ☐ should be tapped to go to the superordinate level, or hold for two seconds to go to the operational display.

Displaying the program lines

1. Tap the **Program** menu in order to display the program list.
2. Tap the desired program number and **Tab** to reach the program line display.
3. ☐ should be tapped to go to the superordinate level, or hold for two seconds to go to the operational display.

Fig. 28: Displaying the Program Lines

Creating program lines

New program lines can be created while creating a program.

1. Tap **Tab** in the program’s editing window to display the program lines.
2. Tap **New** to create a new program line.
3. Enter the time value.
4. Save setting.
5. Enter value of desired channel.
6. Save setting.

Fig. 29: Creating Program Lines
Deleting program lines

Program lines can be deleted while creating a program.

<table>
<thead>
<tr>
<th>Process</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tap Tab in the program’s editing window to display the program lines.</td>
<td></td>
</tr>
<tr>
<td>2. Tap ← to mark the desired program line.</td>
<td></td>
</tr>
<tr>
<td>3. Tap Del to delete the desired program line.</td>
<td></td>
</tr>
<tr>
<td>4. Confirm the query.</td>
<td></td>
</tr>
<tr>
<td>5. ⏎ should be tapped to go to the superordinate level, or hold for two seconds to go to the operational display.</td>
<td></td>
</tr>
</tbody>
</table>

Running a program

During the program sequence, the changes in the solvent composition are displayed in the %A - %D fields.

<table>
<thead>
<tr>
<th>Process</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tap the Program menu in order to display the program list.</td>
<td></td>
</tr>
<tr>
<td>2. Tap the desired program number and Load to load the program.</td>
<td></td>
</tr>
<tr>
<td>3. Tap ⏹️ to stop the program.</td>
<td></td>
</tr>
<tr>
<td>4. Tap 🔄 to interrupt the program.</td>
<td></td>
</tr>
<tr>
<td>5. Tap ⏹️ to stop the program.</td>
<td></td>
</tr>
<tr>
<td>6. Tap STOP to stop the pump.</td>
<td></td>
</tr>
<tr>
<td>7. Tap Restart to repeat the program</td>
<td></td>
</tr>
<tr>
<td>8. Tap Finish to exit the loaded program.</td>
<td></td>
</tr>
</tbody>
</table>
Changing a program

Process

1. Tap the **Program** menu in order to display the program list.
2. Tap the desired program number and **Edit** to edit the program.
3. Change the desired values.
4. Save setting.
5. Press should be tapped to go to the superordinate level, or hold for two seconds to go to the operational display.

Delete the program

Process

1. Tap the **Program** menu in order to display the program list.
2. Tap the desired program number and **Delete** to delete the program.
3. Confirm the query.
4. Press should be tapped to go to the superordinate level, or hold for two seconds to go to the operational display.

Fig. 32: Deleting a program

Creating a program with a starting time

The pump can start a program or a program link at a preset time. This program is labeled **WU (Program Wake Up)** and is located in the program list.

Note: Make sure that the date and time configured in the Setup menu are correct.

Process

1. Tap the **Program** menu in order to display the program list.
2. Tap **WU** and **Edit** to edit the program.

Fig. 33: Creating a Program with a Starting Time
3. Enter the date for the program start.

4. should be tapped to save the settings.

5. Enter the time for the program start.

6. should be tapped to save the settings.

7. Choose program or Link.

8. Enter program number or Link number.

9. Tap to save the settings.

10. should be tapped to go to the superordinate level, or hold for two seconds to go to the operational display.

6.3.6 Link menu

The Link menu displays the status of active links. A maximum of 10 links between defined programs can be created and saved.

<table>
<thead>
<tr>
<th>Process</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tap the Link menu to display the Link list. Tap the desired Link number to edit, open or delete the link</td>
<td>Program list</td>
</tr>
<tr>
<td>Tap Load to run a link.</td>
<td>Program list</td>
</tr>
<tr>
<td>Tap Edit to enter the edit mode.</td>
<td>Program list</td>
</tr>
<tr>
<td>Tap Delete to delete a link.</td>
<td>Program list</td>
</tr>
<tr>
<td>Tap Tab to display the program line.</td>
<td>Program list</td>
</tr>
<tr>
<td>should be tapped to go to the superordinate level, or hold for two seconds to go to the operational display.</td>
<td>Program list</td>
</tr>
</tbody>
</table>

Fig. 34: Deleting a program
Creating a Link

Note: The setting **Wait for external signal** makes the pump wait for an external start signal before the link is run. The setting **Wait: no wait** runs the link without interruption.

<table>
<thead>
<tr>
<th>Process</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tap the Link menu to display the Link list.</td>
<td></td>
</tr>
<tr>
<td>2. Tap the desired link number to edit the link.</td>
<td></td>
</tr>
<tr>
<td>3. Select the program number.</td>
<td></td>
</tr>
<tr>
<td>4. ▶️ should be tapped to save the settings.</td>
<td></td>
</tr>
<tr>
<td>5. Enter the number of repetitions (Repeat) for the previously specified program.</td>
<td></td>
</tr>
<tr>
<td>6. ▶️ should be tapped to save the settings.</td>
<td></td>
</tr>
<tr>
<td>7. Select the desired option for wait:</td>
<td></td>
</tr>
<tr>
<td>8. ▶️ should be tapped to go to the superordinate level, or hold for two seconds to go to the operational display.</td>
<td></td>
</tr>
</tbody>
</table>

Executing a Link

While the link sequence runs, the changes in the solvent composition are displayed in the fields %A - %D.

<table>
<thead>
<tr>
<th>Process</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tap the Link menu to display the Link list.</td>
<td></td>
</tr>
<tr>
<td>2. Tap the desired link number and Load to load the link.</td>
<td></td>
</tr>
<tr>
<td>3. Tap ▶️ to start the link.</td>
<td></td>
</tr>
<tr>
<td>4. Tap ■ to interrupt the link.</td>
<td></td>
</tr>
<tr>
<td>5. Tap ■ to stop the link.</td>
<td></td>
</tr>
</tbody>
</table>
6. Tap **STOP** to stop the pump.
7. Tap **Restart** to repeat the Link.
8. Tap **Finish** to exit the loaded Link.

Fig. 38: Executing a Link

Deleting a Link

<table>
<thead>
<tr>
<th>Process</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tap the Link menu to display the Link list.</td>
<td></td>
</tr>
<tr>
<td>2. Tap the desired Link number and Delete to delete the link.</td>
<td></td>
</tr>
<tr>
<td>3. Confirm the query.</td>
<td></td>
</tr>
<tr>
<td>4. should be tapped to go to the superordinate level, or hold for two seconds to go to the operational display.</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 39: Deleting a Link

6.4 Setting minimal and maximal pump pressure

The pump stops automatically if the pump pressure drops below the min. value or exceeds the max. value.

Min. pump pressure serves to prevent dry running of the pump and enables the pump to stop if there is a leak. If the minimum is set to 0, the minimum pump pressure is not monitored.

<table>
<thead>
<tr>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. In the status display, tap on the field with a gray background next to the pressure display to view the current settings in the Pressure Min/Max menu.</td>
</tr>
<tr>
<td>2. Use the numeric fields to enter the correct value for min. pressure.</td>
</tr>
<tr>
<td>3. Tap Min to save the settings.</td>
</tr>
<tr>
<td>4. Use the numeric fields to enter the correct value for max. pressure.</td>
</tr>
<tr>
<td>5. Tap Max to save the settings.</td>
</tr>
<tr>
<td>6. Tap to move to the superordinate level.</td>
</tr>
</tbody>
</table>

Fig. 38
6.5 Configuring control signals

For test purposes or in some other cases, it can make sense to manually enter these signals.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>○</td>
<td>Off</td>
</tr>
<tr>
<td>●</td>
<td>On</td>
</tr>
<tr>
<td>⌘</td>
<td>Pulse</td>
</tr>
</tbody>
</table>

Process

1. In the status display, tap on the field with a gray background next to Event to view the current settings in the Select: Events.
2. Tap on the corresponding symbols to configure the control signals.
3. ➞ should be tapped to save the settings.
4. Tap ↩ to move to the superordinate level.

6.6 Configuring the LPG module

In the Setup menu, up to three channels can be activated for the solvents used.

Process

1. Tap ➩ to go to the Main menu.
2. Tap the Setup menu to display options.
3. Tap Gradient to adjust the current pump parameters.
4. Tap Type to select the Gradient mode LPG ternary or otherwise LPG binary.
5. ➩ should be tapped to go to the superordinate level, or hold for two seconds to go to the operational display.
7. Functional tests

Note: Standard processes regarding IQ and OQ in single devices may be handled differently in individual cases.

7.1 Installation Qualification (IQ)

The customer may request the Installation Qualification, which is free of charge. In case of a request, the Technical Support of KNAUER or from a provider authorized by KNAUER performs this functionality test during the installation.

The Installation Qualification is a standardized document that includes the following:

- confirmation of flawless condition at delivery
- check if the delivery is complete
- certification on the functionality of the device

7.2 Operation Qualification (OQ)

The Operation Qualification includes an extensive functionality test according to KNAUER standard OQ documents. The Operation Qualification is a standardized document and free of charge. It is not part of the delivery. Please contact the Technical Support in case of request.

The Operation Qualification includes the following:

- definition of customer requirements and acceptance terms
- documentation on device specifications
- device functionality check at installation site

To make sure that the device operates within the specified range, you should test the device regularly. The test intervals depend on the usage of the device.
8. Troubleshooting

First measures for troubleshooting:
- Check all screw fittings.
- Check whether air has gotten into the supply lines.
- Check device for leaks.

Further measures:
- Check errors against error list
- Contact the technical support hotline of the manufacturer

8.1 LAN

Go through the following steps, in case no connection between the computer and the devices can be established. Check after each step if the problem is solved. If the problem cannot be located, call the Technical Support.

1. Check the status of the LAN connection in the Windows taskbar:

 - Connected
 - Connection not established

 If no connection was established, test the following:
 - Is the router switched on?
 - Is the patch cable connected correctly to the router and the computer?

2. Check the router settings:
 - Is the router set to DHCP server?
 - Is the IP address range sufficient for all the connected devices?

3. Check all connections:
 - Are the patch cable connected to the LAN ports and not the WAN port?
 - Are all cable connections between devices and router correct?
 - Are the cables plugged in tightly?

4. If the router is integrated into a company network, pull out the patch cable from the WAN port.
 - Can the devices communicate with the computer, even though the router is disconnected from the company network?

5. Turn off all devices, router, and computer. Erst den Router anschalten und warten bis dieser seinen Selbsttest erfolgreich durchgeführt hat. Firstly, turn on the router and secondly turn on the devices and the computer.
 - Has this been successful?

6. Replace the patch cable to the device with that no connection could be established.
 - Has this been successful?
7. Make sure that the IP port of the device matches the port in the chromatography software.

8.2 Possible problems and solutions

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump will not turn on</td>
<td>The power cable must be connected to the power supply.</td>
</tr>
<tr>
<td></td>
<td>▪ Inspect the power cable to ensure that it is plugged into the power supply.</td>
</tr>
<tr>
<td>When purging, the pump switches off</td>
<td>The venting screw on the pressure sensor must be turned up.</td>
</tr>
<tr>
<td></td>
<td>▪ Check if the venting screw on the pressure sensor is turned open.</td>
</tr>
<tr>
<td>Pump does not transport solvent</td>
<td>Check the following options:</td>
</tr>
<tr>
<td></td>
<td>▪ Purge the pump head so as to remove the air bubbles</td>
</tr>
<tr>
<td></td>
<td>▪ Inspect the eluent filter of the HPLC column and change when blocked</td>
</tr>
<tr>
<td></td>
<td>▪ Replacing the pump head</td>
</tr>
<tr>
<td></td>
<td>▪ Cleaning the check valves</td>
</tr>
<tr>
<td></td>
<td>▪ Changing the check valves</td>
</tr>
<tr>
<td></td>
<td>▪ If the pump head seals are defective, solvent enters the piston backflushing; inform the technical support.</td>
</tr>
<tr>
<td>Pressure or flow rate fluctuations</td>
<td>Check the following options:</td>
</tr>
<tr>
<td></td>
<td>▪ Cleaning the check valves</td>
</tr>
<tr>
<td></td>
<td>▪ Changing the check valves</td>
</tr>
<tr>
<td></td>
<td>▪ Purge the pump head so as to remove the air bubbles</td>
</tr>
<tr>
<td></td>
<td>▪ Tighten the capillary screw fittings on to the inlet and outlet screw fittings of the pump head with a torque wrench at a tightening torque of 28 Nm</td>
</tr>
<tr>
<td>Pump head leaks</td>
<td>Check the following options:</td>
</tr>
<tr>
<td></td>
<td>▪ Check and tighten the inlet and outlet screw fittings of the pump head</td>
</tr>
<tr>
<td></td>
<td>▪ Replacing the pump head</td>
</tr>
<tr>
<td></td>
<td>▪ If the pump head seals are defective, solvent enters the piston backflushing; inform the Technical Support.</td>
</tr>
<tr>
<td>Flow rate is not correct</td>
<td>Check the following options:</td>
</tr>
<tr>
<td></td>
<td>▪ Check the data for the solvent compressibility</td>
</tr>
<tr>
<td></td>
<td>▪ Cleaning the check valves</td>
</tr>
<tr>
<td></td>
<td>▪ Changing the check valves</td>
</tr>
</tbody>
</table>
8.3 System messages

Explanation of the touchscreen’s system messages. They are sorted alphabetically.

<table>
<thead>
<tr>
<th>System message</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto pump head:</td>
<td></td>
</tr>
<tr>
<td>Head data uninitialized!</td>
<td>▪ Switch the device off and on.</td>
</tr>
<tr>
<td></td>
<td>▪ Check whether a pump head with RFID recognition has been installed.</td>
</tr>
<tr>
<td></td>
<td>▪ Repeat the automatic configuration step in the chromatography software.</td>
</tr>
<tr>
<td></td>
<td>▪ Remove pump head, clean it and install it again.</td>
</tr>
<tr>
<td>Auto pump head:</td>
<td></td>
</tr>
<tr>
<td>No head detected!</td>
<td>▪ Switch the device off and on.</td>
</tr>
<tr>
<td></td>
<td>▪ Repeat the automatic configuration in the chromatography software.</td>
</tr>
<tr>
<td></td>
<td>▪ Remove pump head, clean it and install it again.</td>
</tr>
<tr>
<td></td>
<td>▪ Check whether a pump head with RFID recognition has been installed.</td>
</tr>
<tr>
<td>Auto pump head:</td>
<td></td>
</tr>
<tr>
<td>No RFID hardware!</td>
<td>Pump head without RFID detection: If necessary, replace pump head.</td>
</tr>
<tr>
<td>Auto pump head:</td>
<td></td>
</tr>
<tr>
<td>Read failed!</td>
<td>▪ Switch the device off and on.</td>
</tr>
<tr>
<td></td>
<td>▪ Repeat the automatic configuration step in the chromatography software.</td>
</tr>
<tr>
<td></td>
<td>▪ Remove pump head, clean it and install it again.</td>
</tr>
<tr>
<td>Note:</td>
<td>Inform the technical support in case the system message repeats itself.</td>
</tr>
<tr>
<td>Auto pump head:</td>
<td></td>
</tr>
<tr>
<td>write failed!</td>
<td>▪ Switch the device off and on.</td>
</tr>
<tr>
<td></td>
<td>▪ Repeat the automatic configuration step in the chromatography software.</td>
</tr>
<tr>
<td></td>
<td>▪ Remove pump head, clean it and install it again.</td>
</tr>
<tr>
<td>Note:</td>
<td>Inform the technical support in case the system message repeats itself.</td>
</tr>
<tr>
<td>Cannot delete active program/link</td>
<td>Pause active program or otherwise the link and delete the link.</td>
</tr>
<tr>
<td>Cannot edit program from the running link</td>
<td>First stop the link and then edit the data on the device display or with the chromatography software.</td>
</tr>
<tr>
<td>Cannot initialize LAN</td>
<td>Check the cables and connections in the local area network.</td>
</tr>
<tr>
<td>Cannot operate with an empty link</td>
<td>The link is empty. First create a link.</td>
</tr>
<tr>
<td>System message</td>
<td>Solution</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Cannot read data from FRAM</td>
<td>Switch the device off and on. Inform the technical support in case the system message repeats itself.</td>
</tr>
<tr>
<td>Cannot read RTC</td>
<td>Switch the device off and on. Inform the technical support in case the system message repeats itself.</td>
</tr>
<tr>
<td>Cannot start time table</td>
<td>Edit the data on the device display or in the chromatography software.</td>
</tr>
<tr>
<td>Cannot use non-existing component!</td>
<td>Change the setup settings or change the gradient in the program or in setup.</td>
</tr>
<tr>
<td>Cannot write data on FRAM</td>
<td>Switch the device off and on. Inform the Technical Support in case the system message repeats itself.</td>
</tr>
<tr>
<td>Error input activated</td>
<td>Device error, change device settings.</td>
</tr>
<tr>
<td>GUI communication failed (internal)!</td>
<td>Switch the device off and on. Inform the technical support in case the system message repeats itself.</td>
</tr>
<tr>
<td>Instrument in error state</td>
<td>Switch the device off and on. Inform the technical support in case the system message repeats itself.</td>
</tr>
<tr>
<td>Instrument in standby-alone mode</td>
<td>▪ Change the entry in the Setup menu.</td>
</tr>
<tr>
<td></td>
<td>▪ Change the entry in the chromatography software.</td>
</tr>
<tr>
<td>Instrument in standby mode</td>
<td>Touch the touchscreen to end the standby mode.</td>
</tr>
<tr>
<td>Instrument remote controlled</td>
<td>▪ Change the entry in the Setup menu.</td>
</tr>
<tr>
<td></td>
<td>▪ Change the entry in the chromatography software.</td>
</tr>
<tr>
<td>Insufficient access</td>
<td>Change the entry.</td>
</tr>
<tr>
<td>Invalid command</td>
<td>▪ Change the entry.</td>
</tr>
<tr>
<td></td>
<td>▪ Check the cable connections.</td>
</tr>
<tr>
<td>Invalid parameter(s)</td>
<td>Check the validity of the parameter(s).</td>
</tr>
<tr>
<td>Invalid time in time table</td>
<td>Correct the time entry.</td>
</tr>
<tr>
<td>Invalid time table index</td>
<td>Change the entry in the program line.</td>
</tr>
<tr>
<td>Link is loaded</td>
<td>First unload the link then change the link or delete it.</td>
</tr>
<tr>
<td>Link is running</td>
<td>Wait until the link has been completed, then change the link or delete it.</td>
</tr>
<tr>
<td>Maximum pressure! System stopped</td>
<td>▪ Reduce the pressure or adjust the upper pressure limit.</td>
</tr>
<tr>
<td></td>
<td>▪ Restart the system.</td>
</tr>
<tr>
<td>System message</td>
<td>Solution</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Memory error</td>
<td>Switch the device off and on. Inform the technical support in case the system message repeats itself.</td>
</tr>
<tr>
<td>Minimum pressure!</td>
<td>Increase the pressure or adjust the lower pressure limit.</td>
</tr>
<tr>
<td>System stopped</td>
<td>Restart the system.</td>
</tr>
<tr>
<td>Motor failure</td>
<td>Switch the device off and on. Inform the technical support in case the system message repeats itself.</td>
</tr>
<tr>
<td>No link available</td>
<td>Create a link and edit it.</td>
</tr>
<tr>
<td>No link available, pls edit link first</td>
<td>Create a link and edit it.</td>
</tr>
<tr>
<td>No time table to start</td>
<td>Edit the data by means of the chromatography software.</td>
</tr>
<tr>
<td>Non-existing component is set to non-0 value</td>
<td>Switch on the channel or edit the data using the chromatography software.</td>
</tr>
<tr>
<td>Not enough space to store link</td>
<td>Check the pump</td>
</tr>
<tr>
<td></td>
<td>Check the number of program lines. A maximum of 100 program lines are possible.</td>
</tr>
<tr>
<td>Not enough space to store program</td>
<td>Check the pump</td>
</tr>
<tr>
<td></td>
<td>Check the number of program lines. A maximum of 100 program lines are possible.</td>
</tr>
<tr>
<td>Not supported</td>
<td>Change the entry.</td>
</tr>
<tr>
<td>Prg not compatible with pump head!</td>
<td>Modify the program or replace the pump head.</td>
</tr>
<tr>
<td>Program does not exist</td>
<td>Create and edit a program.</td>
</tr>
<tr>
<td>Program is running</td>
<td>Quit program or wait until program has been completed.</td>
</tr>
<tr>
<td>Sum of components is not 100</td>
<td>Change the entry.</td>
</tr>
<tr>
<td>The gradient component is used!</td>
<td>First unload the program. The setup data can only be edited when no program has been loaded or started.</td>
</tr>
<tr>
<td>this link is used in WAKEUP</td>
<td>First quit or delete wakeup program (WakeUp) and then edit or delete the link.</td>
</tr>
<tr>
<td>This program is used in a link</td>
<td>First pause or delete the link, then edit or delete data by means of the chromatography software.</td>
</tr>
<tr>
<td>System message</td>
<td>Solution</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>this program is used in WAKEUP</td>
<td>First quit or delete wakeup program (WakeUp) and then edit or delete the data by means of the chromatography software.</td>
</tr>
<tr>
<td>Time already exists</td>
<td>Correct the time entry.</td>
</tr>
<tr>
<td>Time table line is empty</td>
<td>Edit the program line.</td>
</tr>
<tr>
<td>Too many lines in program</td>
<td>Check the number of program lines. A maximum of 100 program lines are possible.</td>
</tr>
<tr>
<td>I2C failed for panel</td>
<td>Switch the device off and on. Inform the technical support in case the system message repeats itself.</td>
</tr>
</tbody>
</table>
| Unknown pump head type! | Check the pump head.
 | Check whether a pump head with RFID recognition has been installed |
| CRC failed | Switch the device off and on. Inform the technical support in case the system message repeats itself. |
| Wake up time already passed! | Correct the entry for date or otherwise time. |
| Wrong Line number | Change the line index in the link. |
| Wrong link | Check Link-Nr. Values from 1-10 are possible
 | Correct the entry. |
9. Maintenance and care

Organic eluents are toxic above a certain concentration. Ensure that work areas are always well-ventilated! When performing maintenance tasks on the device, always wear safety glasses with side protection, protective gloves, and an overall.

All wetted components of a device, e.g. flow cells of detectors or pump heads and pressure sensors for pumps, have to be flushed with isopropanol first and water afterwards before being maintained, disassembled or disposed.

NOTICE

Electronic defect
Performing maintenance tasks on a switched on device can cause damage to the device.

- Switch off the device
- Pull the power plug.

Users may perform the following maintenance tasks themselves:
- Replacing the pump head
- Exchanging the Ball Valves

Proper maintenance of your HPLC device will ensure successful analyses and reproducible results.

9.1 Maintenance contract

The following maintenance work on the device may only be performed by the manufacturer or a company authorized by the manufacturer and is covered by a separate maintenance contract:

Opening the device or removing housing parts

9.2 Cleaning and caring for the device

NOTICE

Device defect
Intruding liquids can cause damage to the device.

- Place solvent bottles next to the device or in a solvent tray.
- Moisten the cleaning cloth only slightly.

All smooth surfaces of the device can be cleaned with a mild, commercially available cleaning solution, or with isopropanol.

Touchscreen
The touchscreen of the modules can be cleaned with isopropanol and wiped dry with a soft, lint-free cloth.
9.3 Fittings

Tools
Torque wrench

9.3.1 Torque values

<table>
<thead>
<tr>
<th>Pump head, stainless steel</th>
<th>Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 ml</td>
<td>19 Nm</td>
</tr>
<tr>
<td>250 ml</td>
<td>15 Nm</td>
</tr>
<tr>
<td>500 ml</td>
<td>12 Nm</td>
</tr>
<tr>
<td>1000 ml</td>
<td>12 Nm</td>
</tr>
</tbody>
</table>

9.3.2 Tighten fittings

Process

1. Always tighten the inlet screw 1 and the outlet screw 1 with a torque wrench.
2. Always hold the outlet fitting with a wrench when the capillary fitting 1 is being tightened with a wrench.
3. Using an Allen wrench, screw in the opposite pairs of fastening screws 2 evenly and alternately to prevent the pump pistons on the inside from jamming.
4. Tighten the knurled-head screw 5 on the eluent inlet.

Fig. 40: Screw fittings on the pump head

9.4 Pump head

Depending on the requirements of the user, different pump heads are used.

9.4.1 Dismounting the pump head

Prerequisites
The pump head has been flushed.

Tools
Allen screwdriver

DANGER

Life-threatening injuries

Health danger if getting in contact with toxic, infectious or radio-active substances.

➔ Before disposing of the device or sending it away for repair, you are required to decontaminate the device in a technically correct manner.
Note: Loosen the opposite pairs of fastening screws of the pump head evenly and alternately to prevent the pump pistons on the inside from jamming.

<table>
<thead>
<tr>
<th>Process</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. To remove the capillary, loosen the capillary screw fittings at the pump head outlet and pressure sensor inlet.</td>
<td></td>
</tr>
<tr>
<td>2. Disconnect the tubing of the piston backflushing from the inlet and outlet of the flush pump and from the pump head.</td>
<td></td>
</tr>
<tr>
<td>3. Remove the eluent lines from the eluent inlets.</td>
<td></td>
</tr>
<tr>
<td>4. Using an Allen key, loosen the opposite pairs of fastening screws at the pump head evenly and alternately to prevent the pump pistons on the inside from jamming.</td>
<td></td>
</tr>
<tr>
<td>5. Hold the pump head by hand, and consecutively pull out all fastening screws.</td>
<td></td>
</tr>
<tr>
<td>6. Lift off the pump head.</td>
<td></td>
</tr>
</tbody>
</table>

9.4.2 Installing the pump head

Tools
- Allen screwdriver
- Tweezers may be necessary for removal

NOTICE

Device defect
Intruding liquids can cause damage to the device.

➤ Place solvent bottles next to the device or in a solvent tray.
➤ Moisten the cleaning cloth only slightly.

Process

1. Using an Allen key, tighten the opposite pairs of fastening screws evenly and alternately to prevent the pump pistons on the inside from jamming.
2. Tighten all fastening screws evenly.
3. Screw tight the capillary screw fittings on the pump head and pressure sensor.
4. Screw the eluent lines into the eluent inlets.
5. Fasten the tubing of the piston backflushing at the inlet and outlet of the flush pump and the pump head.
9.5 Check valves

Clogged check valves do not open and close properly. They cause pressure fluctuations and irregular flow. If it is impossible to clean the check valves, replace the whole unit. Pay attention to the torques while tightening.

<table>
<thead>
<tr>
<th>Torque</th>
<th>Pump head, stainless steel</th>
<th>Torques for Inlet and Outlet Fittings</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 ml</td>
<td>15 Nm</td>
<td></td>
</tr>
<tr>
<td>250 ml</td>
<td>15 Nm</td>
<td></td>
</tr>
<tr>
<td>500 ml</td>
<td>12 Nm</td>
<td></td>
</tr>
<tr>
<td>1000 ml</td>
<td>12 Nm</td>
<td></td>
</tr>
</tbody>
</table>

9.5.1 Removing the check valves

Prerequisites
- The pump head has been flushed.
- The capillaries have been removed.
- The pump head has been dismounted.

Tools
Open-end wrench (torque), sizes 10 & 17

Procedure

1. Unscrew the outlet fittings ①.
2. Remove the check valve ②.
3. Unscrew the inlet fittings ③.
4. Remove the check valve.

Fig.42: Removing the check valve

Next Steps
You can either replace or clean the check valves.
9.5.2 Cleaning the check valve

The check valves are not disassembled for cleaning but they are cleaned as a unit.

<table>
<thead>
<tr>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Put the valve in a beaker with solvent e. g. isopropanol.</td>
</tr>
<tr>
<td>2. Put the beaker in an ultrasonic bath for at least 10 minutes.</td>
</tr>
<tr>
<td>3. Dry from the inside with compressed air, if possible.</td>
</tr>
</tbody>
</table>

9.5.3 Installing the check valve

When tightening inlet and outlet fittings, pay attention to the torques described in chapter Installation.

Prerequisites
- The pump head has been flushed.
- The capillaries have been removed.
- The pump head has been dismounted.

Tools
- Open-end wrench (torque), sizes 10 & 17

NOTICE

Component defect
Damage to components due to excessive tightening possible.
Observe the torque of the screw connection

- Use 5 Nm torque for stainless steel fittings.
- Use 1 Nm torque for PEEK fittings.

Note: PEEK fittings can withstand pressures up to 400 bar for 1/16” and 200 bar for 1/8”.

Note: The ball and position of the valves have been harmonized to each other. Insert the valves in the direction of flow.

Procedure

<table>
<thead>
<tr>
<th>Process</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Insert the check valves.</td>
<td></td>
</tr>
<tr>
<td>2. Manually screw in inlet and outlet fittings and tighten them with a torque wrench and the respective torque.</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 43: Check valve
10. Technical data

10.1 Solvent delivery

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Dual-piston pump with main and auxiliary piston</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow rate range</td>
<td></td>
</tr>
<tr>
<td>100 ml pump head:</td>
<td>0.1-99.9 ml/min</td>
</tr>
<tr>
<td>250 ml pump head:</td>
<td>0.1-249.9 ml/min</td>
</tr>
<tr>
<td>500 ml pump head:</td>
<td>0.1-499.9 ml/min</td>
</tr>
<tr>
<td>1000 ml pump head:</td>
<td>0.1-999.9 ml/min</td>
</tr>
<tr>
<td>Maximum pressure</td>
<td></td>
</tr>
<tr>
<td>100 ml pump head:</td>
<td>400 bar to 100 ml/min</td>
</tr>
<tr>
<td>250 ml pump head:</td>
<td>225 bar to 100 ml/min</td>
</tr>
<tr>
<td>Linear reduction: 225-200 bar of 100-150 ml/min</td>
<td></td>
</tr>
<tr>
<td>200 bar of 150-250 ml/min</td>
<td></td>
</tr>
<tr>
<td>500 ml pump head:</td>
<td>100 bar to 500 ml/min</td>
</tr>
<tr>
<td>1000 ml pump head:</td>
<td>75 bar to 350 ml/min</td>
</tr>
<tr>
<td>Linear reduction: 75-50 bar of 350-600 ml/min</td>
<td></td>
</tr>
<tr>
<td>50 bar of 600-1000 ml/min</td>
<td></td>
</tr>
<tr>
<td>Flow rate accuracy</td>
<td>±2 % at 5-50 % of the flow range with ethanol-water mixture (10/90)</td>
</tr>
<tr>
<td>Flow rate precision</td>
<td><0.1 % RSD, measured at 5 - 50 % of the flow range with ethanol/water 10/90</td>
</tr>
<tr>
<td>Gradient support</td>
<td>Isocratic HPLC pump</td>
</tr>
<tr>
<td></td>
<td>Pump with binary or ternary LPG valve block (low pressure gradient system, LPG)</td>
</tr>
<tr>
<td></td>
<td>Up to 4 pumps in combination (high pressure gradient system, HPG)</td>
</tr>
<tr>
<td>System protection</td>
<td>Pmin and Pmax adjustable</td>
</tr>
</tbody>
</table>
10.2 Communication

Control
- LAN
- RS-232
- Remote control connections (Stop, Flow, Pressure, Error)
- RFID for automatic pump head detection
- Touchscreen

Programming
- 10 programs, 9 program links (Links), WAKE UP program

Supply frequency
- 50/-60 Hz

Power consumption
- Pump: maximum 320 W
- Binary or ternary valve block: 5 W

Protection type
- IP 20

10.3 General

Temperature range
- 4 – 40 °C; 39.2 - 104 °F

Air humidity
- below 90 %, non-condensing

Power supply
- Pump: 100-240 V, 50-60 Hz
- Binary LPG valve block: 24 V
- Ternary LPG valve block: 12 V

Dimensions
- 397 x 242 x 201 mm
 (Width × Height × Depth)

Weight
- 10.1 kg

Height above sea level
- maximum 2000 meters
11. Repeat orders

11.1 Devices

<table>
<thead>
<tr>
<th>Article</th>
<th>Order Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump with 100 ml pump head, stainless steel, accessories</td>
<td>APD20KA</td>
</tr>
<tr>
<td>Pump with 100 ml pump head, stainless steel with titanium inlays, accessories</td>
<td>APD20KB</td>
</tr>
<tr>
<td>Pump with 250 ml pump head, stainless steel, accessories</td>
<td>APD20LA</td>
</tr>
<tr>
<td>Pump with 250 ml pump head, stainless steel with titanium inlays, accessories</td>
<td>APD20LC</td>
</tr>
<tr>
<td>Pump with 500 ml pump head, stainless steel, accessories</td>
<td>APD20MA</td>
</tr>
<tr>
<td>Pump with 500 ml pump head, stainless steel with titanium inlays, accessories</td>
<td>APD20MC</td>
</tr>
<tr>
<td>Pump with 1000 ml pump head, stainless steel, accessories</td>
<td>APD20NA</td>
</tr>
<tr>
<td>Pump with 1000 ml pump head, stainless steel with titanium inlays, accessories</td>
<td>APD20NB</td>
</tr>
</tbody>
</table>

11.2 Spare parts

<table>
<thead>
<tr>
<th>Article</th>
<th>Order Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 ml pump head, stainless steel, accessories</td>
<td>A4029-1</td>
</tr>
<tr>
<td>250 ml pump head, stainless steel, accessories</td>
<td>A4021-1</td>
</tr>
<tr>
<td>500 ml pump head, stainless steel, accessories</td>
<td>A4038-1</td>
</tr>
<tr>
<td>1000 ml pump head, stainless steel, accessories</td>
<td>A4022-1</td>
</tr>
<tr>
<td>Ball valve for 100 ml and 250 ml pump head</td>
<td>A1122</td>
</tr>
<tr>
<td>Ball valve for 500 ml and 100 ml pump head</td>
<td>A1080</td>
</tr>
<tr>
<td>network cable</td>
<td>A5255</td>
</tr>
<tr>
<td>Set of connector strips: 2 x connector strip, 12-pos., stylus</td>
<td>A1420V12</td>
</tr>
<tr>
<td>2 x flat ribbon cable (1.5 m, 10-pos.)</td>
<td>A1467</td>
</tr>
</tbody>
</table>
12. Chemical compatibility of wetted materials

Note: The user takes the responsibility for using the fluids and chemicals in an appropriate and safe way. If there is any doubt, contact the Technical Support of the manufacturer.

12.1 General

The device is very resistant against a variety of commonly used eluents. However, make sure that no eluents or water come in contact with the device or enter into the device. Some organic solvents (such as chlorinated hydrocarbons, ether) may cause coating damage or loosen glued components by improper handling. Even small quantities of other substances, such as additives, modifiers, or salts can influence the durability of the materials. Exposure time and concentration have a high impact on the resistance.

The following list contains information about the chemical compatibility of all wetted materials which are used in devices made by KNAUER. The data bases on a literature research on the manufacturer specifications of the materials. The wetted materials of this device are listed in the chapter "Technical data".

All resistances mentioned here are for use at temperatures up to 40 °C, unless stated otherwise. Please note that higher temperatures can significantly affect the stability of different materials.

12.2 Plastics

Polyetheretherketone (PEEK)

PEEK is a durable and resistant plastic and, next to stainless steel, the standard material in HPLC. It can be used at temperatures up to 100 °C and is highly chemical resistant against almost all commonly used solvents in a pH range of 1-12,5. PEEK is potentially moderate resistant against oxidizing and reducing solvents.

Therefore, following solvents should not be used: Concentrated and oxidizing acids (such as nitric acid solution, sulfuric acid), halogenated acids (such as hydrofluoric acid, hydrobromic acid) and gaseous halogens. Hydrochloric acid is approved for most applications.

In addition, following solvents can have a swelling effect and may have an impact on the functionality of the built-in components: Methylene chloride, THF and DMSO in any concentration such as acetonitrile in higher concentrations.

Polyethylene terephthalate (PET, outdated PETP)

PET is a thermoplastic and semi-crystalline material with high wear resistance. It is resistant against diluted acids, aliphatic and aromatic hydrocarbons, oils, fats and alcohols, but not against halogenated hydrocarbons and ketones. Since PET belongs chemically to esters, it is not compatible with inorganic acids, hot water and alkalis. Maximum operating Temperature: up to 120 °C.
Polyimide (Vespel®)

This material is wear-resistant and permanent resilient thermically (up to 200 °C) as well as mechanically. It is chemically broadly inert (pH range 1-10) and is especially resistant against acidic to neutral and organic solvents, but vulnerable to pH strong chemical or oxidizing environments: It is incompatible with concentrated mineral acids (such as sulfuric acid), glacial acetic acid, DMSO and THF. In addition, it will be disintegrated by nucleophilic substances like ammonia (such as ammonium salts under alkaline conditions) or acetate.

Ethylene-tetrafluoroethylene copolymer (ETFC, Tefzel®)

This fluorinated polymer is highly resistant against neutral and alkaline solvents. Some chlorinated chemicals in connection with this material should be handled with care. Maximum operating Temperature is 80 °C.

Perfluorethylene-propylen-Copolymer (FEP), Perfluoralkoxy-Polymer (PFA)

These fluorinated polymers hold similar features as PTFE, but with a lower operation temperature (up to 205 °C). PTA is suitable for ultrapure applications, FEP can be used universally. They are resistant against almost all organic and inorganic chemicals, except elemental fluoride under pressure or at high temperatures and fluoride-halogen compounds.

Polyoxymethylene (POM, POM-H-TF)

POM is a semi-crystalline, high-molecular thermoplastic material which stands out due to its high stiffness, low friction value and thermic stability. It can even substitute metal in many cases. POM-H-TF is a combination of PTFE fibres and acetal resin and is softer and has better slip properties as POM. The material is resistant against diluted acids (pH > 4) as well as diluted lyes, aliphatic, aromatic and halogenated hydrocarbons, oils and alcohols. It is not compatible with concentrated acids, hydrofluoric acid and oxidizing agent. Maximum operating Temperature is 100 °C.

Polyphenylene sulfide (PPS)

PPS is a soft polymer which is known for its high break resistance and very high chemical compatibility. It can be used with most organic, pH neutral to pH high, and aqueous solvents at room temperature without concerns. However, it is not recommended for using with chlorinated, oxidizing and reducing solvents, inorganic acids or at higher temperatures. Maximum operating temperature: 50 °C

Polytetrafluorethylene (PTFE, Teflon®)

PTFE is very soft and anti-adhesive. This material is resistant against almost all acids, lyes and solvents, except against fluid natrium and fluoride compounds. In addition, it is temperature-resistant from -200 °C to +260 °C.

Systec AF™

This amorphous perfluorinated copolymer is inert against all commonly used solvents. However, it is soluble in perfluorinated solvents like Fluorinent® FC-75 and FC-40, and Fomblin perfluor-polyether solvents from Ausimont. In addition, it is affected by Freon® solvents.
Polychlorotrifluorethylene (PCTFE, Kel-F®)
The semi-crystalline thermoplastic material is plasticizer-free and dimensionally stable, even in a wide temperature range (−240 °C to +205 °C). It is moderately resistant against ether, halogenated solvents and toluene. Halogenated solvents over +60 °C and chlorine gas should not be used.

Fluorinated rubber (FKM)
The elastomer consisting of fluorinated hydrocarbon stands out due to a high resistance against mineral oils, synthetic hydraulic fluids, fuels, aromatics, and many organic solvents and chemicals. However, it is not compatible with strong alkaline solvents (pH value >13) like ammonia, and acidic solvents (pH value <1), pyrrole and THF. Operating temperature: Between -40 °C and +200 °C.

Perfluorinated rubber (FFKM)
This perfluoro elastomer has a higher fluorine content as fluorinated rubber and is therefore chemically more resistant. It can be employed at higher temperatures (up to 275 °C). It is not compatible with Pyrrole.

12.3 Metals

Stainless steel
Stainless steel is, apart from PEEK, the standard material in HPLC. Steels with WNr. 1.4404 (316L) are used, or with a mixture of higher compatibility.
They are inert against almost all solvents. Exceptions are biological applications which are metal ion sensible, and applications with extreme corrosive conditions. These steels, in comparison to commonly used steels, are increasingly resistant against hydrochloric acid, cyanides and other halogen acids, chlorides and chlorinated solvents.
The use in ion chromatography is not recommended. In case of electrochemical applications, a passivation must be executed first.

Hastelloy®-C
This nickel-chrome-molybdenum alloy is extremely resistant to corrosion, especially against oxidizing, reducing and mixed solvents, even at high temperatures. This alloy may be used in combination with chlor, formic acid, acetic acid and saline solutions.

Titanium, titanium alloy (TiA16V4)
Titanium has a low weight and a high hardness and stability. It stands out due to its very high chemical compatibility and biocompatibility. Titan is applied when neither stainless steel nor PEEK are usable.
12.4 Non-metals

Diamond-like carbon (DLC)
This material is characterized by a high hardness, a low coefficient of friction and thus low wear. In addition, it is highly biocompatible. DLC is inert against all acids, alkalis and solvents commonly used in HPLC.

Ceramic
Ceramic is resistant against corrosion and wear and is fully biocompatible. An incompatibility against acids, alkalis and solvents commonly used in HPLC is not known.

Alumina (Al2O3)
Due to their high resistance to wear and corrosion, alumina ceramic is used as a coating for mechanically stressed surfaces. It is a biocompatible material with low thermal conductivity and low thermal expansion.

Zirconium oxide (ZrO2)
Zirconia ceramics are characterized by their high mechanical resistance, which makes them particularly resistant to wear and corrosion. It is also biocompatible, has low thermal conductivity and is resistant to high pressures.

Sapphire
Synthetic sapphire is virtually pure monocrystalline alumina. It is biocompatible and very resistant to corrosion and wear. The material is characterized by a high hardness and a high thermal conductivity.

Ruby
Synthetic ruby is monocrystalline alumina and gets its red color by the addition of some chromium oxide. It is biocompatible and very resistant to corrosion and wear. The material is characterized by a high hardness and a high thermal conductivity.

Mineral wool
This insulating material consists of glass or stone wool fibres and isolates in high oxidizing conditions and at high temperatures. Mineral wool is valid as commonly inert against organic solvents and acids.

Glass, glass fibre, quartz, quartz glass
These mineral materials are resistant against corrosion and wear and are mostly chemical inert. They are compatible with oils, fats and solvents and show a high resistance against acids and lyes up to pH values of 3-9. Concentrated acids (especially hydrofluoric acid) may embrittle and corrode the minerals. Lyes may ablate the surfaces slowly.
13. Legal information

13.1 Transport damage

The packaging of our devices ensures the best possible protection against transport damage. Check the devices for signs of transport damage. In case you notice any damage, contact the technical support and the forwarder company within three workdays.

13.2 Warranty conditions

The factory warranty for the device is contractually agreed. During the warranty period, any components with material or design-related defects will be replaced or repaired by the manufacturer free of charge. Please refer to our website for further information on terms and conditions.

All warranty claims shall expire in the event that any unauthorized changes are made to the device. This warranty excludes the following:

- Accidental or willful damage
- Damage or errors caused by third parties that are not contractually related to the manufacturer at the time the damage occurs
- Wear parts, fuses, glass parts, columns, light sources, cuvettes and other optical components
- Damage caused by negligence or improper operation of the device and damage caused by clogged capillaries
- Packaging and transport damage

In the event of device malfunctions, directly contact the manufacturer.

KNAUER Wissenschaftliche Geräte GmbH
Hegauer Weg 38
14163 Berlin, Germany
Telephone: +49 30 809727-111
Telefax: +49 30 8015010
E-Mail: support@knauer.net
Internet: www.knauer.net

13.3 Warranty seal

A warranty seal is attached on some devices. The warranty seal is color-coded. A blue seal is used by the assembly or technical support of KNAUER for devices to be sold. After repair, service technicians stick an orange seal in identical position. If unauthorized persons interfere with the device or the seal is damaged, the warranty claim becomes void.

![Warranty Seal](image)
13.4 Declaration of Conformity

The Declaration of Conformity accompanies the product as a separate document and is available online: https://www.knauer.net/de/Support/Declarations-of-conformity

13.5 Disposal

Hand in old devices or disassembled old components at a certified waste facility, where they will be disposed of properly.

13.5.1 AVV-marking Germany

According to the German “Abfallverzeichnisverordnung” (AVV) (January, 2001), old devices manufactured by KNAUER are marked as waste electrical and electronic equipment: 160214. 160214.

13.5.2 WEEE registration

KNAUER as a company is registered by the WEEE number DE 34642789 in the German “Elektroaltgeräteregister” (EAR). The number belongs to category 8 and 9, which, among others, comprises laboratory equipment.

All distributors and importers are responsible for the disposal of old devices, as defined by the WEEE directive. End-users can send their old devices manufactured by KNAUER back to the distributor, the importer, or the company free of charge, but would be charged for the disposal.

13.5.3 Eluents and other operating materials

All eluents and other operating materials must be collected separately and disposed of properly.

All wetter components of a device, e.g. flow cells of detectors or pump heads and pressure sensors for pumps, have to be flushed with isopropanol first and water afterwards before being maintained, disassembled or disposed.
14. Abbreviations and terminology

Here you can find information on the abbreviations and terminology used in this manual.

<table>
<thead>
<tr>
<th>Term</th>
<th>Explanations</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLP</td>
<td>Good Laboratory Practice - quality assurance for laboratories.</td>
</tr>
<tr>
<td>Gradient</td>
<td>Time-dependent composition of solvent (mobile phase) on low-pressure or high-pressure side of system</td>
</tr>
<tr>
<td>HPG</td>
<td>High Pressure Gradient. Operating mode of an HPLC system. The solvent is mixed on the high pressure side of the pump.</td>
</tr>
<tr>
<td>HPLC</td>
<td>High-Pressure Liquid Chromatography (HPLC)</td>
</tr>
<tr>
<td>IP address</td>
<td>Unique address of transmitter or receiver in local network or Internet (Internet protocol)</td>
</tr>
<tr>
<td>Link</td>
<td>Combination of multiple chromatography programs in a single HPLC system</td>
</tr>
<tr>
<td>Solvent</td>
<td>Mobile phase (eluent) or carrier for liquid chromatography</td>
</tr>
<tr>
<td>LPG</td>
<td>Low-Pressure Gradient. Operating mode of an HPLC system. The solvent is mixed on the low pressure side of the pump.</td>
</tr>
<tr>
<td>LPG module</td>
<td>Low pressure gradient module Supplements the pump to a quaternary low-pressure gradient system.</td>
</tr>
<tr>
<td>Remote</td>
<td>The chromatography software controls the pump.</td>
</tr>
</tbody>
</table>
Latest KNAUER instructions online:
www.knauer.net/library